Prolonged Mechanical Stretch Initiates Intracellular Calcium Oscillations in Human Mesenchymal Stem Cells

نویسندگان

  • Tae-Jin Kim
  • Jie Sun
  • Shaoying Lu
  • Ying-Xin Qi
  • Yingxiao Wang
  • Nic D. Leipzig
چکیده

Mesenchymal stem cells (MSCs) are a promising candidate for cell-based therapy in regenerative medicine. These stem cells can interact with their mechanical microenvironment to control their functions. External mechanical cues can be perceived and transmitted into intracellular calcium dynamics to regulate various cellular processes. Recent studies indicate that human MSCs (hMSCs) exhibit a heterogeneous nature with a subset of hMSCs lacking spontaneous calcium oscillations. In this study, we studied whether and how external mechanical tension can be applied to trigger and restore the intracellular calcium oscillation in these hMSCs lacking spontaneous activities. Utilizing the fluorescence resonance energy transfer (FRET) based calcium biosensor, we found that this subpopulation of hMSCs can respond to a prolonged mechanical stretch (PMS). Further results revealed that the triggering of calcium oscillations in these cells is dependent on the calcium influx across the plasma membrane, as well as on both cytoskeletal supports, myosin light chain kinase (MLCK)-driven actomyosin contractility, and phospholipase C (PLC) activity. Thus, our report confirmed that mechanical tension can govern the intracellular calcium oscillation in hMSCs, possibly via the control of the calcium permeability of channels at the plasma membrane. Our results also provide novel mechanistic insights into how hMSCs sense mechanical environment to regulate cellular functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biochemical and morphological changes in bone marrow mesenchymal stem cells induced by treatment of rats with p-Nonylphenol

Objective(s):In previous investigations, we have shown para-nonylphenol (p-NP) caused significant reduction of proliferation and differentiation of rat bone marrow mesenchymal stem cells (MSCs) in vitro. In this study, we first treat the rats with p-NP, then carried out the biochemical and morphological studies on MSCs. Materials and Methods: Proliferation property of cells was evaluated with t...

متن کامل

Preparation and investigation of polylactic acid, calcium carbonate and polyvinylalcohol nanofibrous scaffolds for osteogenic differentiation of mesenchymal stem cells

Objective(s): In this study, the effect of electrospun fiber orientation on proliferation and differentiation of mesenchymal stem cells (MSCs) was evaluated. Materials and Methods: Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polylactic acid (PLA), poly (vinyl alcohol) (PVA) and calcium carbonate nanoparticles (nCaP). The surface morphology of prepared nanofibrou...

متن کامل

Research Paper: Investigating Morphologic Changes and Viability of Rats’ Bone Marrow Mesenchymal Stem Cells in Microgravity

Introduction: Mesenchymal Stem Cells (MSCs) are multipotent cells capable of duplication and auto-recovery and distinction from various cells including chondrocytes, adipocytes, chondroblasts, fibroblasts, and osteoblasts. Human stem cells are always subject to local and external mechanical loads. External loads are caused by physical activity in external environment loading to infliction of st...

متن کامل

Cadmium chloride treatment of rats significantly impairs membrane integrity of mesenchymal stem cells via electrolyte imbalance and lipid peroxidation, a possible explanation of Cd related osteoporosis

Objective(s): Bone marrow mesenchymal stem cells (MSCs) play an important role in bone health. Cadmium causes osteoporosis, but the exact mechanisms of its effect on MSCs are not known. Materials and Methods: Rats were treated with cadmium chloride (40 mg/l) in drinking water for six weeks, and then the biochemical and morphological studies on MSCs were carried out as a cellular backup for oste...

متن کامل

Cadmium treatment of rats caused impairment of osteogenic potential of bone marrow mesenchymal stem cells: a possible mechanism of cadmium related osteoporosis

Background: The mechanism of cadmium induced osteoporosis is not well understood, so in this study, we examined the toxicity of bone marrow mesenchymal stem cell (MSCs) following treatment of rats with CdCl2 in drinking water, to revile the effect of this chemical on differentiation potential of MSCs. Methods: At the end of third passage, MSCs were grown in the osteogenic medium for 21 days....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014